
At 2343 h on 16 July 2006 during a collecting trip through the municipality of Aldama (state of Tamaulipas), we found a DOR adult female I. cenchos (480 mm SVL, 223 mm TL, 19.81 g) as we were road-collecting at 8 km E of Aldama-Barra de Tordo (22.9414194°N, 99.9954°W, datum: NAD27; elev. 141 m). As we were preserving the specimen, we extracted a juvenile Sceloporus olivaceus (37 mm SVL, 65 mm TL, 1.94 g) from an expanded loop in the body mid-section. This snake species had been repeatedly found on this road in previous years. The area of Barra del Tordo is undergoing intensive human development, which has greatly increased the number of DOR animals encountered.

The specimens of S. olivaceus (UANL 6831) and I. cenchos (UANL 6830) were deposited in the herpetological collection of the Universidad Autónoma de Nuevo León. Research and collecting were conducted under the authority of SEMARNAT scientific research permits OFICIO NÚM/SGPA/DGVS/00800 issued to DL.

Submitted by DAVID LAZCANO, Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Laboratorio de Herpetología, Apartado, Postal - 513, San Nicolás de los Garza, Nuevo León, C.P. 66450, México (e-mail: dvlazcano@hotmail.com); ALAN KARDON, Reptile/Amphibian/Aquarium Department, San Antonio Zoo, 3903 N. St. Mary’s Street, San Antonio, Texas 78212, USA (e-mail: reptiles@sazooaq.org); IAN RECCHIO, 5333 Zoo Drive, Los Angeles, California 90027, USA (e-mail: Pardoo2@aol.com); and CHRIS RODRIGUEZ, Department of Biology, California State University, Northridge, 18111 Nordhoff Street Northridge, California 91330-8303, USA (e-mail: sleepingbird@aol.com).

STENOCERUS CADUCUS (NCN). REPRODUCTION. Data on reproduction in Stenocerus caducus are scarce, and little is known about its biology in Paraguay. Cei (1993. Mus. Reg. Sci. Nat. Torino Monogr. 14:1–949) pointed out that few data exist on its reproductive activity. Clutch size has been reported in related species, such as S. azureus (Carreira and Baleta 2004. Herpetol. Rev. 35:270; Torres-Carvajal 2004. Herpetol. Rev. 35:172), but the nesting habits of S. caducus are unreported. Here, we provide preliminary observations on nesting in S. caducus.

At 1640–1700 h on 15 November 2006, we found a female S. caducus laying eggs along a forest path at Kangiüery Biological Station (27.5126944°S, 55.7852222°W, datum: WGS84; elev. 158 m), inside San Rafael National Park. The female was laying the eggs in a small burrow (3–4 cm depth and 4–5 cm width) made in the earth underground, covered with leaf litter. The shape of the nest burrow was a simple round hole, and the egg chamber was equal to or slightly smaller than the opening. Two eggs were deposited with an interval of ca. 10 min between them. The just-laid eggs were pale grey with white longitudinal stripes; after less than 10 sec, the eggs turned completely white, the stripes disappearing. Egg shape also changed, because just-laid eggs were bilaterally symmetrical, becoming ovoid as they dried in contact with air. We could not obtain precise egg measurements because eggs were not removed from the nest, but we estimated that they averaged 23 mm in major axis diameter. The female was 67.2 mm of SVL and 142.0 mm total length. Egg major axis diameter was 34% of the female’s SVL. Measurements were taken once she finished laying eggs, and she was subsequently released at the same place.

While the female laid eggs, she was vulnerable to predator attack; however, she appeared highly cryptic on the leaf litter background. Only her hind limbs and posterior body were inside the small burrow; the rest of the body, including a large portion of the long tail, was exposed. The next day, we re-examined the nest location, and found it covered with soil and leaf litter; we could see no obvious evidence of the nest made the day before.

We thank A. A. Yansky, J. L. Cartes, P. Smith, and M. Hayes for suggestions on the manuscript. This work was done within the framework of the Biological Monitoring of San Rafael project, supported by the Forestry Bureau, Council of Agriculture (Tai-wan Government) through BirdLife International.

Submitted by PIER CACCIALI, Asociación Guya Paraguay, Cnel. Rafale Franco 381, Asunción, Paraguay (e-mail: piercantopus@gmail.com); and MÓNICA RUMBO, Sección Etnología, Facultad de Ciencias, Igua 4225, Montevideo, Uruguay (e-mail: mrumboca@yahoo.com).

At 0200 h on 8 June 2005, CMCAL and TBGC collected 8 eggs of *T. hispidus* at the Parque Estadual das Dunas do Natal (05.8135278°S, 35.1920278°W; datum: WGS84; elev. 72 m), Natal City, Estado do Rio Grande do Norte, Brazil. Located within Atlantic Forest Domain, the nest site, a small terrestrial cavity (5 cm diameter × 3 cm deep) covered with herbaceous and shrubby vegetation (notably Anthurium affine, Aechmea aquilega, and Krameria tomentosa), was encountered during a transect survey. On 4 April 2007 at 0910 h, EMXF collected one egg (1109 mm³, 0.68 g) of this species, next to DBEZ - Departamento de Botânica, Ecologia e Zoologia (Department of Botany, Ecology and Zoology) at the Campus of Universidade Federal do Rio Grande do Norte – UFRN (05.8426667°S, 35.2018611°W; elev. 69 m), Natal City. The collection location of this egg was a garden area surrounded by a forest patch. The single egg was found in soil beneath sparse leaf litter (< 1 cm deep). Eggs from each collection date were placed in a terrarium (20 × 12 × 20 cm) in a sand substrate, and maintained at the Laboratório de Herpetologia (Department of Botânica, Ecologia e Zoologia/UFRN). We placed the terrarium next to a window protected from direct solar radiation, but we made no efforts to otherwise control light or temperature; incubation occurred under ambient conditions. In Natal City, ambient temperatures during the June–July incubation interval for the first clutch varied from 22.0 °C to 30.0 °C, whereas ambient temperatures during the brief April incubation of the second single egg varied from 24.0 °C to 34.0 °C.

On 12 July 2005, about five weeks after the first clutch was found, juveniles began to emerge; on 8 April 2007, four days later the single egg was found, the juvenile emerged. Body measurements were taken immediately upon hatching, and each individual was sexed following euthanization (Table 1). Coefficients of variation (CV) for data among all hatchlings were quite low (< 0.05) except for mass (CV = 0.25). Tail length/body length ratio differed significantly between males (mean = 1.70 ± 0.04 mm; N = 4) and females (mean = 1.59 ± 0.04 mm; N = 5; Mann-Whitney U test: \(P = 0.0143 \)).

Mean body size of nine *T. hispidus* hatchlings is similar to that observed by Vitt (op. cit.) for individuals hatched in the laboratory (mean = 27.8 ± 0.45 mm SVL; N = 5), but their average mass is somewhat less than that recorded by Vitt (op. cit.; mean = 0.74 ± 0.09 g).

The *T. hispidus* (CHBEZ 1167–1174; 1715) were deposited in the herpetological collection of Universidade Federal do Rio Grande do Norte, Natal City. We thank two anonymous reviewers for helpful comments. The Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) supported LBR with a research grant (Process 141993/2006-5).

Submitted by **LEONARDO B. RIBEIRO**, Programa de Pós-Graduação em Psicobiologia, Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Fisiologia, Caixa Postal 1511, 59078-970, Natal, RN, Brazil (e-mail: ribeiro.lib@gmail.com); **CAROLINA M. C. A. LISBOA** (e-mail: carolizosoabio@yahoo.com.br) and **THAÍS B. GUEDES** (e-mail: thaismguedes@yahoo.com.br), Departamento de Botânica, Ecologia e Zoologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte, 59072-970, Natal, RN, Brazil; **MIGUEL F. KOLODIUK** (e-mail: miguelkolodui@yahoo.com.br), and **ELIZA M. X. FREIRE** (e-mail: elizaajuju@ufrrnet.br), Programa de Pós-Graduação em Psicobiologia, Universidade Federal do Rio Grande do Norte, Centro de Biociências, Departamento de Fisiologia, Caixa Postal 1511, 59078-970, Natal, RN, Brazil.

VARANUS KOMODOENSIS (Komodo Dragon). **Occurrence.** *Varanus komodoensis* is a large monitor endemic to the Lesser Sunda region of southeastern Indonesia. Over the last 30 years, extant populations of *V. komodoensis* have been recorded from six islands (Auffenberg 1981. The Behavioral Ecology of the Komodo Monitor. Univ. Press of Florida, Gainesville, Florida. 406 pp.), five of which occur within Komodo National Park (KNP). However, a 1998 survey failed to detect any sign of *V. komodoensis* on Padar Island, a small mountainous island (20 km²) within KNP, suggesting that this population was extirpated (Ciofi and deBoer 2004, Herpetol. J. 14:99–107). In 1969–1970, Auffenberg (op. cit.) had estimated that ca. 60 dragons inhabited this hilly and largely savannah-covered island. Ancedotal evidence suggests that this population of *V. komodoensis* had been extirpated by the early 1980s, possibly because of illegal harvesting of the Timor Deer (*Cervus timorensis*), their preferred prey.

Recently, reports from fishermen plying local waters have suggested the renewed presence of *V. komodoensis* on Padar Island. To confirm these reports, we conducted trapping and visual surveys on Padar Island over five days in December 2004. To assess for *V. komodoensis* presence, direct and indirect methods were used. Direct methods involved the placement of two aluminium box traps (300 cm × 50 cm × 50 cm) baited with ca. 0.5 kg of goat meat. These traps were positioned in the largest forested valley on