Volume 45(16):215-229, 2005

PHYLOGENETIC RELATIONSHIPS OF A NEW SPECIES OF APOSTOLEPIS FROM BRAZILIAN CERRADO WITH NOTES ON THE ASSIMILIS GROUP (SERPENTES: COLOBRIDAE: XENODONTINAE: ELAPOMORPHINI)

HEBERT FERRAREZZI1
FAUSTO ERRITTO BARBO1
CRISTINA ESPAÑA ALBUQUERQUE1,2

ABSTRACT

The assimilis species group is one of the several assemblages that can be distinguished within the genus Apostolepis. The group is characterized by a uniform red dorsal pattern, broad nuchal-cervical collars, enlarged light snout blotch, dark ventral head, and entirely black terminal shield. A new species is here recognized as a member of the assimilis group and its phylogenetic relationships to A. assimilis and A. cearensis is inferred by means of cladistic analysis. Apostolepis ammodites sp. nov. can be easily diagnosed from all congeners by many autapomorphies and an exclusive combination of features. Comparative data are presented on scalation, coloration, dentition, osteology, and geographic distribution, with some notes on feeding and reproductive biology. The new species occurs through central Brazilian Cerrado, filling a gap between the areas occupied by A. assimilis and A. cearensis. Although superficially resembling A. assimilis, parsimony analysis based on morphological data indicates its phylogenetic relationships closest to A. cearensis. Systematic analysis shows that two recently described species, A. freitasi and A. tertulianobeui, must be relegated as junior synonyms of A. cearensis and A. assimilis, respectively.

KEYWORDS: Serpentes, Colubridae, Elapomorphini, Apostolepis, assimilis group, A. ammodites sp. nov., phylogenetic systematics, biogeography.

INTRODUCTION

The South American fossorial snakes of the genus Apostolepis Cope 1862 consist of a highly speciose clade of about 30 species, and a number of yet undescribed ones. The taxonomy of such an already difficult group (Vanzolini, 1986; Ferrarezzi, 1993; Harvey, 1999) has become increasingly complex, not only due to the lack of a comprehensive systematic review but, also because of a recent proliferation of poorly described new taxa (e.g., Lema, 2002, 2003, 2004a,b). This is the case of two new species, lately described by Lema (2004a,b) and based on a single specimen each: Apostolepis freitasi from central Bahia,
and *Apostolepis tertulianobeni* from Minas Gerais, both being undistinguishable from *Apostolepis cearensis* and *Apostolepis assimilis*, respectively, but clearly referred to the *assimilis* group as defined by Ferrarezzi (1993).

Elapomorphus assimilis was described by Reinhardt (1861), from Minas Gerais, Brazil. Latter, Gomes (1915) described *Apostolepis assimilis*, based on four specimens from State of Ceará, Northeastern Brazil, comparing it to *A. assimilis* and *A. coronata* (= *Elapomorphus lepidus*). Apparently unaware of Gomes’s species, Werner (1924, 1925) described in two subsequent papers *A. sanctae-ritae*, based on a single specimen from “Santa Rita”, Brazil (Brasilien Expedition V.F. Steindachner, 1903) and *A. amarali* based on a specimen from unknown South American locality. The last name has undisputedly been considered a junior synonymy of *A. cearensis* (Amaral, 1930, 1936; Peters & Orejas-Miranda, 1970). Recently, Ferrarezzi (1993), recognized the *assimilis* species group of *Apostolepis* to include *A. assimilis* and *A. cearensis*, and considered *A. sanctae-ritae* as conspecific to *A. cearensis*, rather than a synonym of *flavotorquata* (Amaral, 1930, 1936; Peters & Orejas-Miranda, 1970) or a valid species (Lema & Fernandes, 1997; Lema, 2002).

The Instituto Butantan received, in the last few years, several specimens of a clearly distinctive but unnamed elapomorphine species of the genus *Apostolepis*, that seems to be quite common within the Cerrado domain of central Brazil. It appears to be intermediate between *Apostolepis assimilis* and *A. cearensis*, in superficial morphology and through it geographical distribution. The present paper refers to the formal definition and diagnoses of the *assimilis* species group along with an attempt to elucidate the taxonomic status and systematic relationships of its component species.

MATERIAL AND METHODS

Specimens: A total of 25 museum specimens known to represent the new species were examined. In addition to published figures and descriptions, representative individuals or samples of most species of *Apostolepis* were analyzed (Ferrarezzi, 1993), in order to fundament a brief character analyses of the group. Relevant material observed for external features (scelation, color pattern and proportions), cranial osteology, and hemipenial anatomy is listed in Appendix 1. Specimens from the following institutions with there respective acronyms were analyzed (used in the text, figures, and appendix): IB, Laboratório de Herpetologia, Instituto Butantan, São Paulo; MNRJ, Museu Nacional, Universidade Federal do Rio de Janeiro; CHUNB, Coleção Herpetológica da Universidade de Brasília; MZUSP, Museu de Zoológica da Universidade de São Paulo; FUNED, Fundação Ezequiel Dias, Belo Horizonte, MG.

Along with the description of the new species we report the state observed for nearly all external characters currently thought to be diagnostic for the new species relative to its congeners (Ferrarezzi, 1993; Harvey, 1999; Harvey et al., 2001). Morphological information about members of the *dorbignyi* species group were obtained from Harvey, 1999 and Embert (pers. comm.) on Ventral shields were counted using Dowling’s (1951) method.

In addition to the observation of external morphology, we prepared osteological and hemipenial material of the new species and its closest relatives *Apostolepis assimilis* and *A. cearensis*, as well as of *A. pymi* and *A. flavotorquata*, used as outgroups. Skulls of preserved specimens were prepared either dried (with the aid of dermestid beetles and by chemical maceration). Hemipenes were mounted with agar jelly, following the procedures described by Pesantes (1994) for inverted organs from preserved specimens, or by Manzani & Abe (1988) for freshly killed ones. The nomenclature used for hemipenial structures is based on Dowling & Savage (1960) and Zaher (1999).

Species habitat correlations were made by plotting distribution localities in the South American vegetation map of Hueck & Siebert (1972).

Comparative analyses: Monophyly of an ingroup comprising the *assimilis* species group (*Apostolepis assimilis*, *A. cearensis* and *A. annmodites* sp. nov. – sensu Ferrarezzi, 1993) has been assumed as a working hypothesis. Representatives of the *dorbignyi* group (*A. dorbignyi*, *A. multiciucta*) were included as the closest outgroup, whereas those belonging to the *flavotorquata* group (*A. flavotorquata*, *A. pymi*) were taken as a more distant outgroup to root the tree resultant from cladistic analysis. The empirical justification for this assumption about ingroup-outgroup demarcation can be found in Ferrarezzi (1993), but it is also implicit in our character matrix. Character states observed were numerically coded in discrete binary and multistate transformation series, in order to construct the data matrix ready to be subjected to a parsimony analysis using Hennig86 applicative (Farris, 1982). Statements regarding evolutionary direction (polarity) of morphological transformation series (character states) were only assessed *a posteriori* to parsimony analyses, following the principles.

The criterion used to evaluate phylogenetic relationships between the new species and other ingroup taxa was apomorphy based (Hennig, 1966). Systematic relationships and biogeographic history of the new species are briefly discussed in a cladistic and vicariance context.

The **assimilis** species group

Definition and diagnosis: *Apostolepis* of medium size; nasal separated from preocular; fifth supralabial scale only in contact with the parietal; temporal 0+1; terminal shield pointed in a sharply edge; large internasal white blotch covering the snout and reaching the frontal shield; moderate to extremely broad and sharply evident white and black nucho-cervical collars; dorsal pattern uniformly red (without any trace of dark stripes); white ventral surface, except the gular region which is dark pigmented (black spotted) to mostly black; terminal shield black, undifferentiated from the tail tip coloration. Duvernoy’s gland moderately developed; hardierian gland well developed, reaching the temporal region, adductor jaw muscles moderately developed, reaching the dorsal surface of the brain case.

Distribution: Northeastern, central, and southeastern Brazil to neighboring northeastern Argentina; through the Caatinga and Cerrado domains to mesophytic forest of upper Paraná.

Content: At least *Apostolepis assimilis* (Reinhardt) (Fig. 1), *A. cearensis* Gomes (Fig. 2), and *A. ammodites* sp. nov. (Fig. 3). Perhaps also *A. quiroga*, *A. arenaria* and *A. gaboi* (see discutions and conclusions).

Remarks: The monophyly of the **assimilis** group, as here defined, is still uncertain due to the complete lack of osteological information for several species not analyzed in the present study.

Key to the Apostolepis of the assimilis species group

1. Dorsal pattern uniform red, without any vestige of dark stripes or lines; white and black nucho-cervical collars relatively wide, the posterior edge of black cervical collar reaching at least the 6th scale of the vertebral row; nasal well separated from preocular by prefrontal-supralabial contact; light snout blotch large, usually extensive to frontal ... 2

1'. Without the above combination of features

2. Terminal shield mostly whitish, well differentiated from black tail tip coloration; three infralabials contacting anterior chinshields; temporals 0+0 (5th and 6th labial contacting parietal); symphial approaching to nearly in contact with anterior chinshields ... *dorbignyi* group

2'. Terminal shield uniformly black, undifferentiated from tail tip coloration; four infralabials contacting anterior chinshields; temporals usually 0+1 (last labial separated from parietal); symphial usually well separated from chinshields by first infralabials ... *assimilis* group

3. Light snout blotch cream; white supralabial blotch moderate sized; ventral surface of head lightly to moderately pigmented; rostral shortly rounded; nucho-cervical (white+black) collars about 2-3+3-4 scales long; ventral counts 236-267 in males and 246-270 in females (southeastern to central Brazil) ... *A. assimilis*

3'. Light snout blotch reddish; white supralabial blotch small to minute; ventral surface of head heavily pigmented to mostly black; rostral at least slightly prominent (if not pointed); nucho-cervical (white+black) collars about 4-6+4-7 scales long; ventral counts 215-235 in males, 225-252 in females ... 4

4. With an additional white post-cervical collar; rostral nearly roundish, its portion visible from above at most one half of interprefrontal suture length; (central to adjacent northeastern Brazil)

4'. Without an additional white post-cervical collar; rostral prominently pointed, its portion visible from above at least two thirds of interprefrontal suture length; (northeastern Brazil) ... *A. cearensis*

Apostolepis assimilis (Reinhardt, 1861)

(Figura 1, 7a, 9a, 10a)

Elapomorphus assimilis Reinhardt, 1861:235. Type-locality: Minas Gerais, Brazil.

Diagnosis: (Tables 1 and 2; Fig. 1) Rostral short and rounded, not prominent; little visible from above; ventrals 236-267 in males, 246-270 in females; subcaudals 31-39 in males, 25-31 in females (Fig. 8); white snout blotch cream (Fig. 7a); white supralabial blotch usually covering at least two supralabials; a single white nuchal color 2-3 scales long, followed by a black cervical color 3-4, restricted dorsally.

Distribution: Caatingas, central Brazilian cerrados and interspersing mesophytic forest of southeastern Brazil, but uncertain to northern Argentina (Giraudo & Scrocchi, 1998); upper Paraná, upper São Francisco, and Eastern Paraguay basins (Fig. 6).

Natural history: *Apostolepis assimilis* is an inhabitant of open vegetation areas from Atlantic forest and Cerrado, also considered an urban species (Pereira et al., 2004). It preys on small amphibiaenians and scolecophidian snakes (Ferrarezzi, 1993; Marques et al., pers. comm.). A female had six vitellogenic follicles and the largest measuring was 30,91 mm.

Remarks: *A. tertulianobeui* Lema, 2004 is clearly a member of the *assimilis* species group (*sensa* Ferrarezzi, 1993), judging from color pattern and scalation features. In most relevant diagnostic features presented by Lema (2004b), the holotype of *A. tertulianobeui* does not differ from the range of variation we have observed in a large sample of *A. assimilis* (Ferrarezzi, 1993). Eventually, a narrower cervical collar can be found in a few individuals as an intrapopulational polymorphism, but a reduced dark pigmentation, as referred by Lema (2004b), may be better explained by fading in the long time preserved holotype specimen. Although there is no specific type-locality, besides the state of Minas Gerais, the distribution of *A. tertulianobeui* is coincident with the distributional area of *Apostolepis assimilis* (Fig. 6). Therefore, even though we did not examine the holotype of *A. tertulianobeui*, we have no doubt that this name must be relegated as a junior synonym of *A. assimilis*.

Apostolepis cearensis Gomes, 1915

(Figuras 2, 7c, 9c, 10c)

Remarks: *A. tertulianobeui* Lema, 2004 is clearly a member of the *assimilis* species group (*sensa* Ferrarezzi, 1993), judging from color pattern and scalation features. In most relevant diagnostic features presented by Lema (2004b), the holotype of *A. tertulianobeui* does not differ from the range of variation we have observed in a large sample of *A. assimilis* (Ferrarezzi, 1993). Eventually, a narrower cervical collar can be found in a few individuals as an intrapopulational polymorphism, but a reduced dark pigmentation, as referred by Lema (2004b), may be better explained by fading in the long time preserved holotype specimen. Although there is no specific type-locality, besides the state of Minas Gerais, the distribution of *A. tertulianobeui* is coincident with the distributional area of *Apostolepis assimilis* (Fig. 6). Therefore, even though we did not examine the holotype of *A. tertulianobeui*, we have no doubt that this name must be relegated as a junior synonym of *A. assimilis*.

Apostolepis amarali Werner, 1925:62. Type-locality: South America (here restricted to Northeastern Brazil).
Apostolepis freitasi Lema, 2004:3-7. Type-locality: Tanque do Aragão, Bahia, Brazil (New synonym).

Diagnosis: (Fig. 2) Rostral somewhat pointed and prominent; nasal well separated from preocular; temporals usually 0+1, the 5th supralabial in contact with parietal (occasionally 0+0; 5th+6th in contact); ventrals 215-237 in males, 227-248 in females; subcaudals 27-32 in males and 23-31 in females (Table 1; Fig. 8); terminal caudal shield pointed and uniformly black; head black posterolaterally, with a large light area on snout (red in life, reaching frontal) (Fig. 7) and small to indistinct light supralabial spot; a broad white area on snout (red in life, reaching frontal) (Fig. 7) and two plus \(\delta \) lary teeth 4+2, dentary teeth 9-10; pterygoid teeth 3-4

Remarks: The recently described species \(A. \) freitasi Lema, 2004 is clearly a member of the assimilis species group (sensu Ferrarezzi, 1993), judging from the features of color pattern and scolation. In all diagnostic features presented by Lema (2004a), the holotype of \(A. \) freitasi is identical to \(A. \) cearensis. It is not surprising that Lema (2004a) traces no comparison of his new species with the last one, since if this have been done, the author would have failed to find any diagnostic feature at all. The same can be said about the type locality which is within of the geographic distribution area of \(A. \) cearensis (Fig 6). Therefore, even without having examined the holotype of \(A. \) freitasi, we have no doubt that this name must be included as a junior synonym of \(A. \) cearensis.

Apostolepis ammodites sp. nov.
(Figuras 3, 4, 7b, 9b, 10b, appendix 2)

Holotype: BRAZIL: TOCANTINS: Palmas (10°02'S, 47°20'W, 230 m altitude), adult \(\delta \), IB 65267, deposited at “Coleção Herpetológica Alphonse Richard Hoge”, Laboratório de Herpetologia, Instituto Butantan.

Paratypes: BRAZIL: \(\delta \) BAHIA: Cocos (14°11'S, 44°32'W, 559 m altitude), IB 61525; Correntina (13°20'S, 44°38'W, 561 m) CHUNB s/nº; DISTRITO FEDERAL (15°46'S, 47°55'W), IB 49363; GOIÁS: (IB 15723); Cana Brava, Rio Cana Brava (13°30'S, 48°21'W, 400 m), IB 40478; MZUSP 8007; São Domingos (13°23'S, 46°19'W, 667 m), IB 62593, 67392; MATO GROSSO: São Felix, Lago Itacy (11°37'S, 50°40'W, 195 m), IB 15723; MINAS GERAIS: Betim (19°58'S, 44°11'W, 860 m), FUNED 003; Curvelo (18°45'S, 44°25'W, 632 m), IB 22410; Serra do Cipó (19°24'S, 43°19'W, 869 m), MZUSP 7595; Três Marias (18°12'S, 45°14'W, 538 m), FUNED s/nº; Vazante (17°59'S, 49°54'W, 680 m), IB 48041; TOCANTINS: Gurupi (11°43'S, 49°04'W, 287 m); Lageado (09°45'S, 48°21'W, 202 m), IB 64533 (Adult \(\delta \)), IB 64534 (juvenile \(\delta \)), IB 64571 (Adult \(\delta \)), IB 64613 (Adult \(\delta \)), IB 65680 (juvenile \(\delta \)), IB 65681 (Adult \(\delta \)), Palmas (10°02'S, 48°20'W, 230 m), IB 65261 (Adult \(\delta \)), IB 65262 (Adult \(\delta \)), IB 65263 (Adult \(\delta \)), IB 65264 (Adult \(\delta \)), IB 65265 (Adult \(\delta \)), IB 65266 (Adult \(\delta \)), IB 65268 (juvenile \(\delta \)), IB 65269 (Adult \(\delta \)), IB 65269 (Adult \(\delta \)), IB 65268 (Adult \(\delta \)), Porto Nacional (10°42'S, 48°25'W, 212 m), IB 65682 (Adult \(\delta \)), IB 65683 (Adult \(\delta \)), IB 66166 (Adult \(\delta \)), Santa Isabel, Ilha do Bananal (15°17'S, 49°25'W, 611 m), IB 12342; unspecified locality: IB 71470 (juvenile \(\delta \)), IB 71471 (Adult \(\delta \)).

Etymology: Ambivalent connotation, from the Greek, \(\alpha \mu \mu \sigma \sigma \) (ammos) meaning sand plus \(\delta \upsilon \tau \varepsilon \sigma \) (dytes, the internal \(\gamma \) may be rendered by \(\iota \) in Latin) meaning anyone that likes immersions or diving, but furthermore from the Latin \(\alpha \mu \mu \sigma \sigma \) meaning around or having \(\delta \upsilon \tau \varepsilon \sigma \) meaning richly adorned or sumptuous. In allusion both to the habitat and habits of the new species and to its unique extravagant nucho-cervical color pattern having two white collars around a black collar.

Distribution: Widespread within the Caatinga morphoclimatic domain of northeastern Brazil (Fig. 6).

Diagnosis: Rostral nearly roundish but somewhat prominent, its portion visible from above about 1/3 to 1/2 of the interprefrontal suture length; ventrals 221-235 in males to 234-252 in females; subcaudals 27-32 in males and 23-31 in females (Table 1; Fig. 8); light snout blotch reddish in life (Fig. 7) (fading to yellowish in preservative) and a small to indistinct light supralabial spot; white nuchal collars about 3-6 scales long, black cervical collar 4-7 scales long, followed by an additional postcervical white collar 1-3 scales long; dorsal nuchal color (covering 4-5 scale rows) followed by a small to indistinct light supralabial spot; a broad white area on snout (red in life, reaching frontal) (Fig. 7) and two plus \(\delta \) lary teeth 4+2, dentary teeth 9-10; pterygoid teeth 3-4
Description and variation: Relatively large species of *Apostolepis* (maximum total length for a female 634 mm). Head subcylindrical, not distinct from neck, with somewhat prominent but rounded snout; body elongate cylindrical; tail short (males (n = 10): 9-11% of total length, mean 10%; females (n = 14): 7-9% of total length, mean 8%), thick and bluntly pointed. Eye minute, with a subelliptic (nearly round when dilated) pupil.

Scalation: (Fig. 4) Rostral somewhat prominent but roundish, the portion visible from above about 1/2 to 1/3 of its distance to frontal. Nasal always separated from preocular by a broad prefrontal contact with second supralabial. Six supralabials (second and third entering eye). Temporals 0+1, usually only the fifth supralabial in contact with parietal (occasionally also the forth making a slightly contact). Occipitals 3-5, the lateral very large. Synfisial separated from chinshields by contact between first infralabials; usually seven infralabials, the first four in contact with anterior chinshields, and the forth and fifth in contact with posterior chinshields; anterior chinshields wider and nearly equal to the posteriors in length. Ventralis 221-235 (mean = 229.2) in males (n = 10) to 234-250 (mean = 242.6) in females (n = 14); subcaudals 32-36 (mean = 33.4) (n = 10) in males and 26-31 (mean = 28.5) in females (n = 13) (Table 1; Fig. 8); terminal caudal shield short, high and bluntly pointed, in contact with 5-6 scales around.

Dentition and cranial osteology: (Table 2; Figs. 9 and 10) Tooth series short and with stout teeth. Maxillary very short, with four solid teeth increasing in size posteriorly followed, after a distinct interspace, by a pair of large deeply grooved fangs, situated bellow the eye. Five palatine followed by three or four pterygoid teeth; the anterior end of pterygoid barely extending beyond its articulation with ectopterygoid, and just touching the palatine. Dentary short, bearing 9-10 subequal teeth, increasing in length to the forth and then gradually decreasing to the last one. Reduced posterior process of dentary extending just a behind splenial-angular hinge; meckelian channel closed along most of the
dentary length. Ectopterygoid flattened and deeply forked anteriorly, forming a fairly large maxillo-ectopterygoid fenestra. Premaxillae very thick and robust, the lateral processes bounded to the maxillae, and with a stout dorsal process making very broad contact with the dorsal laminae of nasals, which is very wide and nearly rectangular, broader than and making an extensive transversal suture with the frontal and with the antero-dorsal edge of prefrontal. Supratemporals small, distantly separated from parietal and not reaching the posterior level of occipitals. Postorbital bone absent.

Hemipenis: The organ is subcilindrical and stout with a narrower base. Apex is just slightly bilobate, calyculate, and semicapitate. Spines are nearly uniformly distributed around the body. The *sulcus spermaticus* is forked slightly above the mid-length of the organ, with the branches running centrolineally to the extreme apex.

Coloration in life (Fig. 3) Dorsum uniform vivid orange-red (without any vestige of dark stripes); head black postero-laterally (to firsts ocipital rows), with a large reddish blotch on snout (covering entirely the prefrontals to reach the anterior end of frontal and supraoculars), a small to indistinct cream supralabial spot posterior to the eye is mostly restricted, if not confined, to the forth supralabial; a broad white nuchal collar (3-6 scales long) followed by a similar extensive black cervical collar (4-7 scales long); and an additional white postcervical collar (1-3 scales long); ventral surface uniformly light (unpigmented), except under the head and neck, where the infraabial, chin and gular regions are mostly black. The dorso-ventral tail coloration is similar to that of body, and with a distinct black band around the tail tip (7-11.5 scale long); terminal caudal shield uniformly black (not differentiated from tail tip coloration).

Distribution: All the known distribution records for the new species fall within the central and northeastern portion of the Cerrado morphoclimatic domain (Fig. 6).

Natural History: *Apostolepis ammodites* sp. nov. is a inhabitant of open vegetation areas of Cerrado (Fig. 5), where it appears to be restricted to sandy soils (F. Curcio, C. Nogueira and M.T. Rodrigues, pers. comm.). A specimen (IB 64613) contained digested remains of skin of a small unidentified *Amphisbaena* and the head of an ant of the subfamily Attinae. The ant’s head is most probably the secondary remain from the stomach content of the amphisbaenid prey.

A specimen (IB 64613) contained digested remains of skin of a small unidentified *Amphisbaena* and the head of an ant of the subfamily Attinae. The ant’s head is most probably the secondary remain from the stomach content of the amphisbaenid prey.

A specimen (IB 64613) contained digested remains of skin of a small unidentified *Amphisbaena* and the head of an ant of the subfamily Attinae. The ant’s head is most probably the secondary remain from the stomach content of the amphisbaenid prey.

The new species is oviparous (A. Silveira, pers. comm.). A female (IB 65261, 502 mm SVL) had three vitellogenic follicles and the largest measuring was 15.99 mm. Five males (IB 62593, IB 65262 IB 65263, IB 65268, and IB 65664) had large testes and convoluted deferent ducts. The largest male (IB 62593, 450 mm SVL) had the largest test, with 13.86 mm and was collected in August/2000. The smallest male (IB 65268) with large testes and opaque deferent ducts had 282 mm SVL. It was collected between December/2001 and January/2002.
Characters and character states coded for the cladistic analysis

Characters and respective character states numerically coded and listed below correspond to those in the data matrix of Table 3, which are optimized in the cladogram presented in Figure 11. Linearly ordered multistate transformation series (denoted by NA) were managed under the assumption of additivity during parsimony analysis.

Characters

Coloration (Figs. 1-4, 7):

1. Light snout blotch color (Fig. 7):
 - (0) cream or whitish
 - (1) reddish

2. Light snout blotch shape:
 - (0) moderate sized irregularly edged blotch(es), confined to prefrontals dorsally
 - (1) a broad regular blotch covering all snout, reaching frontal and supraoculars

3. White supralabial blotch:
 - (0) moderate sized, fairly exceeding fourth labial
 - (1) small (mostly confined on fourth labial) to minute or eventually absent

4. Pigmentation of the ventral head surface:
 - (0) virtually immaculate
 - (1) irregularly dark blotched.
 - (2) mostly black

5. White nuchal collar:
 - (0) narrow (1-2 scales long) if present
 - (1) moderately broad (2-4 scales long)
 - (2) large (4-6 scales long)

6. Black cervical collar:
 - (0) narrow (1 scale long)
 - (1) moderate (2-3 scales long)
 - (2) wide (4-6 scales long)
 - (3) extremely long (5-7 scales long)

7. Anterior indentation of black cervical collar along vertebral row:
 - (0) absent
 - (1) present

8. Ventral extension of black cervical collar:
 - (0) absent without vestiges
 - (1) variable, but usually at list a vestige

9. White post-cervical collar:
 - (0) absent
 - (1) present

10. Terminal shield color:
 - (0) mostly whitish, differentiated from tip of tail
 - (1) uniformly black, undifferentiated from tip tail
Scalation (Figs. 4, 7):
11. Rostral shield:
 (0) short and rounded
 (1) slightly prominent but roundish
 (2) prominently pointed
12. Temporals: Comment: The usual condition in A. cearensis is state (0), although polymorphism has been observed in some populations. A single species of the flavotorquata group exhibits intraspecific polymorphism.
 (0) 0+1 (posterior temporal present between last supralabial and parietal)
 (1) 0+0 (no temporals, last two supralabial contacting parietal)
13. Infralabials contacting anterior chinshields:
 (0) four
 (1) three
14. Ventral counts (modal): Comment: The dorbignyi group exhibits interspecific variation and were coded as missing data.
 (0) 217-232 in males, 227-248 in females
 (1) 241-261 in males, 254-265 in females
15. Subcaudal counts (modal):
 (0) 32-36 in females, 37-41 in males
 (1) 27-31 in females, 32-37 in males
 (2) 23-27 in females, 28-31 in males

Cranial osteology (Figs. 9, 10, Tab. 2):
16. Number of pterygoid teeth:
 (0) 3-4 (mode 4)
 (1) 2
17. Number of dentary teeth (mode):
 (0) 7-8
 (1) 9-10
18. Dentary shape:
 (0) nearly straight
 (1) curve
19. Prearticular crest of compound bone:
 (0) higher than surangular crest posteriorly
 (1) as low as surangular crest
20. Shape of mentonian foramen:
 (0) elongate groove
 (1) rounded
21. Shape of premaxillae:
 (0) roughly T-shaped, with a distinct ascending process
 (1) stoutly enlarged without a distinct ascending process, but not pointed
 (2) strongly enlarged and prominently pointed
22. Septomaxillary process of premaxillae:
 (0) short and widely separated from each other.
 (1) moderately long and close to each other
 (2) long and closer to each other
23. Contact between premaxillae and maxillae:
 (0) distantly separated
 (1) separated
 (2) bound to each other
24. Width of facial segment of skull:
 (0) relatively wide, conferring a larger palatine-ectopterygoid distance
 (1) relatively narrower
25. Ectopterygoid shape:
 (0) wider and flat
 (1) narrow and sub cylindrical
26. Contact between dorsal laminae of nasals and frontals:
 (0) absent
 (1) present, forming a transverse suture
27. Shape fronto-parietal suture in dorsal view:
 (0) U-shaped, no parietal indentation between frontals
 (1) W-shaped, with an antero-median parietal indentation between frontals
28. Width of fronto-parietal suture:
 (0) short and wide
 (1) narrower and longer
29. Contact between nasal and prefrontal:
 (0) absent
 (1) present dorsally
 (2) present laterally

Ecology (Fig. 5):
30. Habitat (soil):
 (0) non sandy soils
 (1) sandy soils
31. Habitat (physiognomy):
 (0) mesophytic forests
 (1) mesic savannas
 (2) semiarid caatingas

Results of Cladistic analysis

Parsimony analysis of the data matrix in Table 3 resulted in a single most parsimonious tree, which was rooted in the flavotorquata species group (Fig. 11). This cladogram presents a highly consistent pattern of character congruence, as denoted by its consistency and retention indexes: length = 43; CI = 0.97, RI = 0.97 (the values are the same under both Wagner and Fitch parsimony options applied to ordered multistate characters). Even if the total amount of data is partitioned into different character classes (viz: coloration, scalation, osteology, or ecology), the same single tree topology is obtained from each independent analyses of the four subsets.
The results of the cladistic analysis demonstrate that *A. ammodites* sp. nov. is closer to *A. cearensis* than *A. assimilis* (Fig. 11). This last species appears as the most conservative lineage within the clade. At least with regard to the character sample analyzed here, it remains nearly identical to the common ancestor of the tree species. On the other hand, the lineage leading to *A. ammodites* sp. nov. and *A. cearensis* is the most divergent lineage morphologically, judging from an amount of synapomorphic and autapomorphic traits of coloration and, especially, cranial osteology (Figs. 9, 10 and 11).

Regarding the evolutionary rate of the different classes of morphological data, the scalation features represent the most conservative ones, while the cranial osteology is the most divergent.

DISCUSSION AND CONCLUSIONS

At least three other species exhibiting entirely black terminal shield may be further proven to belong to the *assimilis* group Ferrarezzi, unpublished data). These are *Apostolepis arenaria* Rodrigues, 1993, and *A. gaboi* Rodrigues, 1993, a pair of closely related species that shares apomorphies with both *A. ammodites* sp. nov. and *A. cearensis*, plus a few additional features only with the latter, and thus, may be sister to *A. cearensis*. On the other hand *A. quiroga* Giraudo & Scrocchi, 1998 lacks most derived features of the other species, and may represent the sister taxa of the whole group. The phylogenetic relationships of all of them are left to be discussed in a further study. By now, it is sufficient to explain that keeping them out of here will not disqualify our analysis about the pattern of cladistic relationships of the other species, since they have also been excluded from outgroup comparison.

At least one of the apomorphies determined within the *assimilis* group, a higher degree of rostral prominence, is also shared by several species referred to the *dimidiata* and *arenaria* groups of *Apostolepis* (Ferrarezzi, 1993). Absence of rostral prominence is inferred as a plesiomorphic within *Apostolepis* since it is the common condition in the closely related genera *Elapomorphus* and most species of *Phalotris* (excluding the *nasutus* group, Ferrarezzi, 1993, 1994). An ad hoc assumption of our present phylogenetic hypothesis is

Taxa	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31		
A. gr. flavotorquata	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0		
A. gr. dorogiu	0	1	0	1	1	0	0	0	0	0	1	1	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0
A. assimilis	0	1	0	1	1	1	0	0	0	1	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
A. ammodites sp. nov.	1	1	1	2	2	3	1	1	1	1	1	0	0	0	1	0	1	1	0	1	1	1	1	2	1	1	1	1	2	1	1	1	
A. cearensis	1	1	1	2	2	2	1	0	0	1	2	0	0	0	2	1	0	0	1	0	2	2	0	1	1	0	1	0	1	1	2		

Made with NEXUS Data Editor
that rostral prominence has evolved independently in several elapomorphine lineages. However, a better understanding of phylogenetic relationships, in addition to detailed information on morphometrics and, hopefully, also on ecology (including detailed descriptions of microhabitat use) are still necessary for reliable interpretations of the possible phylogenetic meaning and adaptive value of an enlarged rostral scale in these groups of *Phalotris* and *Apostolepis*.

The present discovery of new diagnostic characters arranged in a simple congruent pattern of relationships, although just for a few species, stands as a first step towards a comprehensive resolution of the whole group. The original synapomorphy scheme proposed here represents a testable phylogenetic hypothesis to be corroborated, modified or (mostly important) even refuted, after an advanced survey on these character states for other putative members of a broad-
based assimilis group, as well as other Apostolepis in general.

Finally, given the allopatric pattern of distribution (Fig. 6), a hypothesis of the biogeographic history under the assumption of a vicariance model is developed (Fig. 12). The biological area cladogram resulting from the recovered cladistic relationships for the assimilis group of Apostolepis indicates that the northeastern portion of the Cerrado is more closely connected to the Caatinga than to the southwestern Cerrado region. Further area cladograms derived from other groups of organisms exhibiting the same areas of endemism are needed in order to test the generality of this conjecture.

RESUMO

As espécies do grupo assimilis se caracterizam por um padrão dorsal vermelho uniforme, colares nuco-cervicais largos, mancha clara do focinho larga, região ventral da cabeça densamente pigmentada e escudo terminal completamente preto, é um dos vários grupos que podem ser distintos dentro do gênero Apostolepis. Uma nova espécie é aqui reconhecida como membro do grupo assimilis e suas relações filogenéticas para A. assimilis e A. cearensis são inferidas por meio de uma análise cladística. A. ammodites sp. nov. pode ser diagnosticada facilmente de todos os congeneres por muitas autapomorfias e uma combinação exclusiva de caracteres. Dados comparativos são apresentados sobre escutelação, coloração, dentição, osteologia e distribuição geográfica, junto com notas sobre alimentação e biologia reprodutiva. A espécie nova ocorre através do Cerrado brasileiro central, preenchendo o intervalo entre as áreas ocupadas por A. assimilis e A. cearensis. Embora se assemelhe superficialmente a A. assimilis, análises de parcimônia baseadas em dados morfológicos indicam maior parentesco filogenético com A. cearensis. Análises sistemáticas mostram que duas espécies recentemente descritas, A. freitasi e A. tertulianobeui, devem ser consideradas como sinônimos juniores de A. cearensis e A. assimilis, respectivamente.

PALAVRAS-CHAVE: Serpentes, Colubridae, Elapomorphini, Apostolepis, grupo assimilis, A. ammodites sp. nov., sistemática filogenética, biogeografia.

ACKNOWLEDGEMENTS

We are indebted to R.J. Sawaya, for kindly taking countless photographs of preserved specimens and skulls (don’t forgetting the “Eye Series”). F. Curcio contributed to the preparation of osteological material. O.A.V. Marques, C. Nogueira, F. Curcio, A.C.O.R. Costa, and M.T. Rodrigues provided images of live specimens and their natural habitats, bringing us important information about species in the field, as well as fruitful discussions about the subject. D. Embert
provided new information on the variation of *A. multicincta*. M.T. Rodrigues furnished valuable suggestions and criticism during the elaboration of the senior author's dissertation on elapomorphine systematics, and PE. Vanzolini kindly shared his annotated literature on *Apostolepis* taxa. We are indebted to F.L. Franco for advisory help with literature, V.J. Germaino for cooperative work with preserved collection material, A. Dall’Onder for assistance with images, and S.M. Almeida-Santos for comments on reproductive biology. This paper was partially funded by grants from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAFESP) and from FUNDAP.

REFERENCES

Received em: 15.06.2005
Aceito em: 26.08.2005
APPENDIX 1

Material Examined

Museum Collections:
IB (Laboratório de Herpetologia, Instituto Butantan, São Paulo);
MZUSP (Museu de Zoologia, Universidade de São Paulo);
MNRJ (Museu Nacional do Rio de Janeiro);
UNB (Dept.Zoologia, Universidade de Brasília);

Apostolepis assimilis: BRAZIL: SÃO PAULO: Carapicuíba (IB 72970); Icém/Fronteira (IB 40008); Itu (MZUSP 4180, 6600); São Paulo (IB 24180, 24548, 24873, 27598, 31716, 33316; IB-MSP348); Pirituba (IB 70351 SKULL), Jaraguá (IB 70356 SKULL); Santana do Parnaíba (IB 61761); DISTRITO FEDERAL: Brasília (IB 20566, 28734, CHUNB24456, 24474); MINAS GERAIS: Concepção dos Ouros (IB 33206); Uberlândia (MZUSP 3841, 3845). GOIÁS: Jataí (MZUSP 3783); Mineiros (IB 55495); MATO GROSSO: Buriti, Chapada dos Guimarães (MZUSP 5346); MATO GROSSO DO SUL: Amambai (IB 41163); Campo Grande (IB 42978, 57222; MZUSP 10155); Nova Andradina (IB 27489); Paranaiba (IB 45615); Ponta-Porã (IB 44065); PARANÁ: Londrina (IB 37462, 40008).

Apostolepis cearensis: BAHIA: Brumado (IB 33685); Camaçari (LAPH371); Capim Grosso (LAPH294); Feira de Santana (LAPH012, 019, 070, 071, 074 086, 130, 162, 166,203, 277, 310, 315, 429, 434, 463, 464, 505, 515, 615, 624, IB 53700); Mina Caraiba, Jaguarari river (IB 26203); Santo Inácio (MZUSP -MTR.field# 916639, 916640, 916641 (incl.HEMIPENIS); São Gonçalo (LAPH073); CEARÁ: (IB 14948), (IB 0882, holotype, 0910, 0911, 20220 including skull); Crato, Serra do Araripe (IB 20385); Fortaleza (IB 2106, 20020, 55318, 40262); Juazeiro do Norte (IB 20164); Lima Campos, Itacimirim (IB 20190); Limoeiro do Norte (IB 12775); Northeastern Ceará (IB 20097); RIO GRANDE DO NORTE: Natal (IB 43960, 55064-67); PERNAMBUCO: Recife (IB 56983); PIÁUI: Terezina (IB 49743); PARAÍBA: Cabaceiras (MZUSP 9013); Campina Grande (IB 9050); João Pessoa (MZUSP 7975); (MNRJ r3371a, r3371b).

Apostolepis ammodites sp. nov.: BAHIA: Cocos (IB 61525), Correntina (CHUNB s/nº); DISTRITO FEDERAL (IB 49363); GOIÁS: (IB 15723); Cana Brava, Rio Cana Brava (IB 40478); São Domingos (IB 62593, 67392); MATO GROSSO: São Felix, Lago Itacajá (IB 15723); MINAS GERAIS: Betim (FUNED003); Curvelo (IB 22410); Serra do Cipó (MZUSP 7595); Três Marias (FUNED s/nº); Vazante (IB 48041); TOCANTINS: Gurupi (MZUSP 8007); Lajeado (IB 64533, 64534, 64571, 64613, 65680, 65681); Palmas (IB 65261-69, 65664, 65688); Porto Nacional (IB 65682, 65683, 66166); Santa Isabel, Ilha do Bananal (IB 12324); unspecified locality (IB 71470, 71471).

Apostolepis flavotorquata: BAHIA: Coribe (UNB1213); GOIÁS: Anápolis (IB 18851); PIRÊMPOI: Chapada Matogrossense (IB 32530); MATO GROSSO DO SUL: Ilha Solteira (IB 36449, 36450 SKULL).

Apostolepis pymi: AMAZONAS: Balbina (IB 51396); Manaus (MZUSP 8423, 8657); PARÁ: Belém (IB 3033, 3034); Canindé, Rio Gururi (MZUSP 2001); (uncataloged specimen- SKULL).
APPENDIX 2

<table>
<thead>
<tr>
<th>Apostolepis</th>
<th>Rostral length *</th>
<th>Nasal/precocular</th>
<th>Temporals</th>
<th>Contact between parietal and 4th upperlabial</th>
<th>Total number of infrahabits ++</th>
<th>Nocho-cervical collars white</th>
<th>black</th>
<th>white</th>
<th>Light mouth blotch extended from rostral to</th>
<th>Ventral extension of black cervical edor</th>
<th>Chinsheld/infrahabits pigmentation</th>
<th>Black occiput</th>
<th>White supralabial blotch (oval)</th>
<th>Supralabials</th>
<th>Melan/ chinsheld</th>
</tr>
</thead>
<tbody>
<tr>
<td>IB 65267</td>
<td>Holotype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>4 5-6 3</td>
<td>frontal</td>
<td>complete</td>
<td>mostly black gular</td>
<td>3+4+5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65293</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>4 4-5 0</td>
<td>s.o cul.-frontal</td>
<td>incomplete</td>
<td>heavily bloched gular</td>
<td>3+4+5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 64533</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>present</td>
<td>7 (4)</td>
<td>3 6-7 1</td>
<td>parietals</td>
<td>absence</td>
<td>mostly black gular</td>
<td>oval 4 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 64534</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>4 5-6 0</td>
<td>s.o cul.-frontal</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>1/3 sup of 4 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 64571</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>5 6-7 2</td>
<td>s.o cul. and prefrontal</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>oval 4 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 64613</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>5 5-6 0</td>
<td>s.o cul. and prefrontal</td>
<td>absence</td>
<td>mostly black gular</td>
<td>4 and 5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65261</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>4 4-5 2</td>
<td>s.o cul.-frontal</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>sup 3+4+5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65262</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>5 4-5 3</td>
<td>s.o cul.-frontal</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>oval 4 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65263</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>5 5-6 1</td>
<td>s.o cul.-frontal</td>
<td>complete</td>
<td>mostly black gular</td>
<td>absent</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65264</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>3 6-7 2</td>
<td>s.o cul.-frontal</td>
<td>complete</td>
<td>mostly black gular</td>
<td>4+5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65265</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>5 5-6 1</td>
<td>s.o cul.-frontal</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>4+5 sup</td>
<td>6 (2-3)</td>
<td>contact</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65266</td>
<td>Paratype</td>
<td>~1/3 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>5 4-5 1</td>
<td>s.o cul.-frontal</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>4+5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65268</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>just a point</td>
<td>7 (4)</td>
<td>4 5-6 1</td>
<td>frontal-parietals</td>
<td>incomplete</td>
<td>black gular</td>
<td>point on 4 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65269</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>present/absent</td>
<td>7 (4)</td>
<td>3 6-7 1</td>
<td>s.o cul.-frontal</td>
<td>incomplete</td>
<td>black gular</td>
<td>absent</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65664</td>
<td>Paratype</td>
<td>+ 1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>6 5-6 2</td>
<td>frontal</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>4+5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65680</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>4 6-7 2</td>
<td>supra-oculars</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>4+5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65681</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>6 3-4 2</td>
<td>supra-oculars</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>4+5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65682</td>
<td>Paratype</td>
<td>~1/3 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>5 5-6 1</td>
<td>s.o cul.-frontal</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>4 sup+5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65683</td>
<td>Paratype</td>
<td>~1/2 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>5 6-7 1</td>
<td>frontal</td>
<td>incomplete</td>
<td>bloched gular</td>
<td>4 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 65688</td>
<td>Paratype</td>
<td>~1/3 separane</td>
<td>0+1</td>
<td>absent/present</td>
<td>7 (4)</td>
<td>4 5-6 2</td>
<td>frontal</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>point on 4 sup left</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 66166</td>
<td>Paratype</td>
<td>~1/3 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>4 5-6 1</td>
<td>frontal</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>4+5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 67392</td>
<td>Paratype</td>
<td>~1/3 separane</td>
<td>0+1</td>
<td>absent</td>
<td>7 (4)</td>
<td>5 4-5 0</td>
<td>frontal</td>
<td>incomplete</td>
<td>mostly black gular</td>
<td>inf 3+4+5 sup</td>
<td>6 (2-3)</td>
<td>absent</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INSTRUCTIONS TO AUTHORS

(MAY 2002)

Manuscripts should be sent to the Editor-in-Chief:

Papéis Avulsos de Zoologia and Arquivos de Zoologia are publications of the Museu de Zoologia da Universidade de São Paulo (www.mz.usp.br).

EDITORIAL COMMITTEE

Editor-in-Chief: Husam Zaker, Serviço de Vermebrados, Museu de Zoologia, Universidade de São Paulo, Caixa Postal 42.494, CEP 03216-970, São Paulo, SP, Brazil. E-mail: hzaker@ib.usp.br.

Associate Editors: Caio José Einicker Lamas (Universidade de São Paulo, Brasil), Antonio Caíco Marques (Universidade de São Paulo, Brasil), Márcio César Cardoso de Pinna (Universidade de São Paulo, Brasil), Sergio Antonio Vairin (Universidade de São Paulo, Brasil).

Editorial Board: Aziz Naclî Al-Saheer (Universidade de São Paulo, Brasil), Rüdiger Breier (Field Museum of Natural History, U.S.A.); Walter Antonio Pereira Boguer (Universidade Federal do Paraná, Brasil); Carlos Roberto F. Brandão (Universidade de São Paulo, Brasil); James M. Carpenter (American Museum of Natural History, U.S.A.); Ricardo Macedo Corrêa e Castro (Universidade de São Paulo, Brasil); Darrel R. Frost (American Museum of Natural History, U.S.A.); William Ronald Heyer (National Museum of Natural History, U.S.A.); Ralph W. Holzenthal (University of Minnesota, U.S.A.); Adriano Brilhante Kury (Museu Nacional, Rio de Janeiro, Brasil); John G. Maier (American Museum of Natural History, U.S.A.); Nuino Aquino Menezes (Universidade de São Paulo, Brasil); Christian de Muizon (Muséum National d’Histoire Naturelle, Paris, France); Gerardo Lamas Müller (Museo de Historia Natural “Javier Prado”, Lima, Peru); Nelson Papavero (Universidade de São Paulo, Brasil); James L. Patton (University of California, Berkeley, U.S.A.); Richard O. Prum (University of Kansas, U.S.A.); Marcos André Raposo (Museu Nacional, Rio de Janeiro, Brasil); Olivier Reppell (Field Museum of Natural History, U.S.A.); Miguel Trefurt Urbano Rodrigues (Universidade de São Paulo, Brasil); Randall T. Schuh (American Museum of Natural History, U.S.A.); Ubirajara Ribeiro Martins de Souza (Universidade de São Paulo, Brasil); Marcos Tavares (Universidade de São Paulo, Brasil); Paulo Emílio Vanolino (Universidade de São Paulo, Brasil); Richard P. Vani (National Museum of Natural History, U.S.A.); Mario de Vivo (Universidade de São Paulo, Brasil); Paulo Soccon Young (Museu Nacional, Rio de Janeiro, Brasil).

Papéis Avulsos de Zoologia and Arquivos de Zoologia are publications of the Museu de Zoologia da Universidade de São Paulo (www.mz.usp.br).

General Information:

Papéis Avulsos de Zoologia covers primarily the fields of Zoology, publishing original contributions in systematics, paleontology, evolutionary biology, ecology, taxonomy, anatomy, behavior, functional morphology, molecular biology, ontogeny, faunistic studies, and biogeography. Papéis Avulsos de Zoologia also encourages submission of interpretative and empirical studies that explore principles and methods of systematics.

Lists and catalogs should be submitted to the Arquivos de Zoologia.

All contributions must follow the International Code of Zoological Nomenclature. Rejected specimens should be properly curated and deposited in a recognized public or private, non-profit institution. Tissue samples should be referred to their voucher specimens and all nucleotide sequence data (aligned as well as unaligned) should be submitted to GenBank (http://www.ncbi.nlm.nih.gov/GenBank/) or EMBL (http://www.ebi.ac.uk/)

Peer Review:

All submissions to Papéis Avulsos de Zoologia are subject to review by at least two referees and the Editor-in-Chief. Three legible copies (including photographs of original illustrations) and original illustrations must be submitted; all authors will be notified of submission date. Authors may suggest potential reviewers. Communications regarding acceptance or rejection of manuscripts are made through correspondence with the first or corresponding author only. Once a manuscript is accepted providing changes suggested by the referees, the author is requested to return a revised version incorporating those changes (or a detailed explanation of why reviewer's suggestions were not followed) within four weeks upon receiving the communication by the editor. Revised manuscripts must be submitted as both hard copy and electronic file (3.5" disk, Zip Drive, or CD Rom with text in Microsoft Word format). Figures and graphics should be sent separately (".jpg", ".tif", ".xls", ".cdr")

Proofs:

Page-proofs with the revised version will be sent to the first or corresponding author. Page-proofs must be returned to the editor in two weeks, preferably within 48 hours. Failure to return the proof promptly may be interpreted as approval with no changes and/or may delay publication. Only necessary corrections in proof will be permitted. Once page proof is sent to the author, further alterations and/or significant additions of text are permitted only at the author's expense or in the form of a brief appendix ("note added in proof").

Submission of Manuscripts:

Manuscripts should be sent to the Editor-in-Chief: Husam Zaker, Serviço de Vermebrados, Museu de Zoologia, Caixa Postal 42.494, CEP 03216-970, São Paulo, SP, Brazil. Manuscripts are considered on the understanding that they have not been published or will not appear elsewhere in substantially the same or abbreviated form. The criteria for acceptance of articles are: quality and relevance of research, clarity of text, and compliance with the guidelines for manuscript preparation.

Manuscripts should be written preferentially in English, but texts in Portuguese or Spanish will also be considered. Studies with a broad coverage are encouraged to be submitted to Papéis Avulsos de Zoologia. Manipulative studies should be arranged strictly alphabetically and given in the following format: Silva (1998), Silva & Oliveira (1998), Silva et al. (1998).

Abstract:

All papers should have an abstract in English and another in Portuguese, regardless of the original language. The abstract is of great importance as it may be reproduced elsewhere. It should be in a form intelligible if published alone and should summarize the main facts, ideas and conclusions of the article. Telegraphic abstracts are strongly discouraged. Include all new taxonomic names for referencing purposes. Abbreviations should be avoided. It should not include references. Abstracts should not exceed 350 words.

Body of Text:

The main body of the text should include the following sections: Introduction, Materials and Methods, Results, Discussion, and Acknowledgments at end. Primary headings in the text should be in capital letters and centered; the following text should begin on the next line, indented. Secondary headings should be in capital and lowercase letters and flush left; the following text should begin on the next line, indented. Tertiary headings should be in capital and lowercase letters, in italics and indented; the following text should be on the same line and separated from the heading by a hyphen.

Citation Cited:

Citations in the text should be given as: Silva (1998),... Silva et al. (1998). In a multi-authored paper, the authors should be separated with commas, and the last author indicated with an "et al.": Silva et al. (1998). In a paper with three or more authors, the reference need not be cited when author and date are given only as authority for a taxonomic name. The literature section should be arranged strictly alphabetically and given in the following format:

Journal Article – Silva, H.R.; Oliveira, H. & Rangel, S. Year. Article title. Journal name, 00:000-000. Names of journals must be spelled out in full.

Articles in Larger Works – Silva, H.R. Year. Article title. In: Oliveira & Rangel (Eds.), Title of Larger Work. Serial Publication. Publisher, Place, p.000-000.

Tables:

All tables must be numbered in the same sequence in which they appear in the text. Authors are encouraged to indicate where the tables should be placed in the text. They should be comprehensible without reference to the text. Tables should be formatted with horizontal, not vertical, rules. In the text, tables should be referred as Table 1, Tables 2 and 3, Tables 2-6. Use “TABLE” in the table heading.

Illustrations:

Figures should be numbered consecutively, in the same sequence they appear in the text. Separate illustrations should be identified by capital letters and referred to in the text as so (fig. A). Where possible, letters should be placed in the lower right corner of each illustration (in a composite figure). Hand-written illustrations are unacceptable. Illustrations should be mounted on stout, white cardboard. Figures should be mounted in order to minimize blank areas between separate illustrations. High quality color or black and white photographs, and computer generated figures are preferable. Authors are encouraged to indicate where the figures should be placed in the text. Use “FIGURE(s)" and "Figure(s)" for referring to figures in the text, but “FIGURE(S)" in the figure captions and "Figure(s)" when referring to figures in another paper.

For further details of manuscript preparation of format, consult the CBE: Style Manual, available from the Council of Science Editors (http://www.councilscienceeditors.org/publications/style.cfm).